Artistic Image Colorization with Visual Generative Networks

نویسندگان

  • Yuting Sun
  • Yue Zhang
  • Qingyang Liu
چکیده

Visual generative models, such as Generative Adversarial Networks (GANs) [1] and Variational Autoencoders (VAEs) [2], have achieve remarkable results in generating visual images [3, 4, 5, 6]. While most existing work [3, 4] focus on photorealistic images, the problem of generating artistic images is relatively underinvestigated. Different from photorealistic images, artistic images exhibit larger variations in color, visual style and emotion. Therefore, it is challenging for generative models, to capture the richer space of artistic visual domain. In this project, we aim to design visual generative models for the problem of artistic image colorization. We would like to explore multiple settings of colorizing artistic images of different styles. We are interested in the following settings. First, given a gray-scale input image, we expect our system to automatically generate vivid color scheme of the input. Second, given a colorful input image, we would like the generated color scheme to follow user control. To enable this, besides input gray-scale image, our system takes as input one additional k × k color grid, where user can specify color spatially. Moreover, we would like to evaluate our system on various visual styles/media types, for example oil painting and water color, which are both extremely rich in color. The overall design of our systems is illustrated in Figure 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Automatic Colorization with Deep Convolutional Generative Adversarial Networks

We attempt to use DCGANs (deep convolutional generative adversarial nets) to tackle the automatic colorization of black and white photos to combat the tendency for vanilla neural nets to ”average out” the results. We construct a small feed-forward convolutional neural network as a baseline colorization system. We train the baseline model on the CIFAR-10 dataset with a per-pixel Euclidean loss f...

متن کامل

Epitome for Automatic Image Colorization

Image colorization adds color to grayscale images. It not only increases the visual appeal of grayscale images, but also enriches the information contained in scientific images that lack color information. Most existing methods of colorization require laborious user interaction for scribbles or image segmentation. To eliminate the need for human labor, we develop an automatic image colorization...

متن کامل

Image Colorization with Generative Adversarial Networks

Over the last decade, the process of automatic colorization had been studied thoroughly due to its vast application such as colorization of grayscale images and restoration of aged and/or degraded images. This problem is highly ill-posed due to the extremely large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involved im...

متن کامل

Unsupervised Diverse Colorization via Generative Adversarial Networks

Colorization of grayscale images is a hot topic in computer vision. Previous research mainly focuses on producing a color image to recover the original one in a supervised learning fashion. However, since many colors share the same gray value, an input grayscale image could be diversely colorized while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017